2010/04/17

Co zrobić z częścią wygranych pieniedzy???

Jeżeli grasz w pokera i regularnie wygrywasz budując swój bankroll to znaczy, że posiadłeś umiejętność i zrozumiałeś że poker to nie toto-lotek. Na świecie jest wiele ludzi potrzebujących pomocy, przekazując część swoich wygranych na cele charytatywne możesz sprawić komuś wielka radość, pomóc osoba potrzebujacym, sprawić że u kogoś na twarzy pojawi sie uśmiech, dać komuś nadzieje, bo czasami to jedyne co zostało...

FUNDACJE...

Fundacje I Organizacje Charytatywne, Ale Tylko Te, Które Na Prawdę Pomagają!, A Nie Zabierają Pieniądze Na Własne Potrzeby. Niestety Istnieje Takich Organizacji Bardzo Wiele, Które Pod Pozorem Pomocy Innym Próbują Wyłudzić Od Nas Pieniądze. Inna Kategorią Oszustów Są Tacy, Którzy Co Prawda Pomagają, Ale W Dziwnych Okoliczonościach Nie Zgadza Się Im Bilans Wpływów I Wydatków!. Jest To Naganne I Powinno Być Piętnowane Przez Społeczeństwo. Na Szcześcię Istnieję Rzetelne Instytucje Powołane Do Tego Celu, Jak Choćby WOŚP Jurka Owsiaka. Co Roku Możemy Ze Strony Orkiestry Pobrać Sprawozdanie Finansowe Za Rok Poprzedni. Znajdziemy W Nim Dochody Fundacji Oraz Prezycyjną Listę Wydatków. Tak Właśnie Powinna Działać Każda Jednostka Charytatywna. Podsumowując - Zanim Wesprzesz Jakąś Akcję Humanitarną Sprawdź Ją Dokładnie!, Bo Po Co Wspomagać Oszustó I Naciągaczy, Gdy W Około Nas Znajduje Się Wiele Potrzebujących Osób.

O FUNDACJACH SŁÓW KILKA

Fundacje W Obecnym Społeczeństwie Spełniają Bardzo Ważną Rolę Zwłaszcza W Zakresie Badań Naukowych Poprzez Przekazywanie Znacznych Środków Na Badania Rozwojowe. Fundacja Jest Z Założenie Organizacji Non-Profit, Organizacją Która Jest Niezależna Od Rządu. Posiada Swój Własny Zarząd I Własne Środki Finansowania. Pozyskane Środki Przeznacza Na Cele Publiczne Taki Jak: Ochrona Zdrowia, Badania, Edukacja, Pomoc Społeczna, Rozwój I Inne. Fundacje Mogą Wspierać Istniejące Instytucje Jak Również Rozwijać Swoje Własne Programy. Fundacje Mogą Działać Na Dwa Sposoby, Mogą Być Darczyńcami Lub Same Prowadzić Działalność Gospodarczą. W Ostatnim Dziesięcioleciu Można Zauważyć Gwałtowny Wzrost Ilości Oraz Aktywności Fundacji, Fundacje Najczęściej Działają Na Terenie Danego Kraju. Rzadko Swoją Działalność Prowadzą Poza Granicami. Zauważyć Można Że Fundację W Bardzo Poważnym Stopniu Finansują Badania Naukowe I Dlatego Zostały Uznane Za Ważny Składnik Budowy UE. Fundacje Mają Duży Wpływ Na Kierunki Badań I Rozwoju. W Jaki Sposób Fundacja Wspiera Naukę? Wspierają Na Różne Sposoby, Jedną Metod Jest Zwiększanie Funduszy Na Konkretne Badania, Finansując Badania W Początkowej Fazie Projektu, Wspierać Różne Zespoły Badaczy Zaangażowanych W Ten Sam Lub Podobny Projekt. Proponując Sposób Dalszej Finalizacji Badań. Dzięki Temu Że Fundacje Są Bardzo Elastyczne Mogą Łatwo I Szybko Reagować Na Potrzeby Społeczeństwa. Jedną Z Najważniejszych Cech Fundacji Jest To Że Są Niezależne Od Rządów Państw, Co Sprawia Że Są Bardziej Wiarygodne Dzięki Czemu Łatwiej Mogą Wspierać. Roli Fundacji We Wspieraniu Badań Nie Powinniśmy Ograniczać Tylko Do Finansowania, Oprócz Tego Że Fundacje Przekazują Pieniądze To Wpływają Również Na Jakość Badań I Kompetencji. Ostatnimi Rządy Oprócz Zachęt Czysto Finansowych Takich Jak Podatki Starają Się Nakłonić Coraz Więcej Instytucji Do Finansowania Badań. Pomimo Znacznego Udziału Finansowego Fundacji W Badaniach Nadal Największą Część Badań Finansuje Przemysł. W Związku Z Taką Sytuacją UE Próbuje Doprowadzić Do Sytuacji Żeby Jak Najwięcej Środków Z Przemysłu Trafiało Do Fundacji A Te Żeby Finansowały Badania, W Ten Sposób Powstaną Tak Zwane Fundacje Korporacyjne. Poprzez Takie Działanie UE Chce Wzmocnić Działania Fundacji W Finansowaniu I Pozyskiwaniu Środków Na Prowadzenie Badań Rozwojowych.

2009/12/25

RESPECT POKER DIVA

Liz Lieu (born August 2, 1974 in Vietnam) is a Vietnamese professional poker player. Lieu was primarily a limit Texas hold 'em cash games player for a number of years, before embracing tournament play at the 2005 World Series of Poker. When John Phanencouraged her to enter the $1500 no-limit hold'em event, she ended up in fifth place with over $168,000 in prize money. She went on to place 12th in the $5000 no-limit hold'em event the same year and cashed in the $3000 tournament as well. The next stop was the Bellagio's 2005 Festa Al Lago tournament, where she placed fourth in the $2500 no limit hold'em event and 16th in two other top tournaments in the series, taking home more than $80,000 for less than a week's worth of work. She went on to finish in the top ten spots at the World Poker Finals, Five Diamond World Poker Classic, and the Gold Strike World Poker Open. Lieu's first tournament win came at the 2006 L.A. Poker Classic at Commerce Casino, where she won the $1000 limit hold'em event. Her second tournament win came when she won the same event in 2007. In 2006, Lieu was honored by the WSOP and ESPN as a "Final Table Grand Marshall" along with Johnny Chan. Back in September 2007 Lieu signed an exclusive partnership with Chilipoker and acts as an Ambassador for the poker room. As of 2008, Lieu has earned over $690,000 in live tournament play.

Stuey Ungar

Stu Ungar: (AKA - The Kid) Cudowne dziecko pokera. Stu Ungar zyskał ten tytuł w wieku 14 lat jako "natural talent", a jego talent przyniósł my medal WSOP , bransolety a jego wygrane pieniężne oszacowane zostały na 30 000 000$. Niestety jego nałóg narkotykowy pochłonął większość tych środków oraz doprowadził go do tragicznej śmierci w wieku 45 lat.

2009/11/08

2009/11/03

Hole cards and position

In Texas Hold 'em, your positioning is important when it comes to hole cards.

If you're the Small Blind or Big Blind, you're in a weak spot. First, you're stuck posting a bet with the blind no matter what you have and that means that you're forced to play weak cards no matter what. Also as the hand progresses, other players can get a feel for what you have and that means they can exploit their position and any weakness you may have.

The best place to be when playing Hold 'em is the Button spot. That's because the button gets to wager last after the Flop. When a player is closer to the Button, they can actually stay longer with hole cards that are less weak, such as King/Ten, Queen/Ten, Jack/Ten and Nine/Ten.

The other night, I was next to the button, holding a Jack/Ten and decided to stay for the Flop. When the Flop was a Jack and a Ten, I was in heaven. It was a lucky Flop, yes; but if I were in an early spot, I would not have stayed.

Pay attention to holed cards and positioning!

Poker an art or science?

Is Poker an art or a science? What do you think?

My opinion, for what it's worth, is that it's a lot of both. And the more I play, the more I find I learn... I seem to be constantly learning! I'm sure you find the same...

2009/10/31

Even odds

The terms 'even odds', 'even money' or simply 'Evens' (1 to 1, or 2 for 1) imply that the payout will be one unit per unit wagered plus the original stake, that is, 'double-your-money'. Assuming there is no bookmaker fee or built-in profit margin, the actual probability of winning is 50%. The term "better than even odds" looks at it from the perspective of a gambler rather than a statistician. If the odds are Evens (1-1), and you bet 10, you would be returned 20, profiting 10. If the gamble was paying 4-1 and the event occurred, you would make a profit of 40. So, it is better than Evens from the gambler's perspective because it pays out more than one-for-one. If an event is more likely (positively favored) to occur than a 50-50 chance, then the odds will be worse than Evens, and the bookmaker will pay out less than one-for-one.

In popular parlance surrounding uncertain events, the expression "better than even" usually implies a better than (greater than) 50% chance of the event occurring, which is exactly the opposite of the meaning of the expression when used in a gaming context.

The odds are a ratio of probabilities; an odds ratio is a ratio of odds, that is, a ratio of ratios of probabilities. Odds-ratios are often used in analysis of clinical trials. While they have useful mathematical properties, they can produce counter-intuitive results: an event with an 80% probability of occurring is four times more likely to happen than an event with a 20% probability, but the odds are 16 times higher on the less likely event (4-1 against, or 4) than on the more likely one (1-4, or 4-1 on, or 0.25).

The logarithm of the odds is the logit of the probability.

Gambling odds versus probabilities

In gambling, the odds on display do not represent the true chances that the event will occur, but are the amounts that the bookmaker will pay out on winning bets. In formulating his odds to display the bookmaker will have included a profit margin which effectively means that the payout to a successful bettor is less than that represented by the true chance of the event occurring. This profit is known as the 'over-round' on the 'book' (the 'book' refers to the old-fashioned ledger in which wagers were recorded, and is the derivation of the term 'bookmaker') and relates to the sum of the 'odds' in the following way:

In a 3-horse race, for example, the true chances of each of the horses winning based on their relative abilities may be 50%, 40% and 10%. These are the relative probabilities of the horses winning and are simply the bookmaker's 'odds' multiplied by 100 for convenience. The total of these three percentages is 100, thus representing a fair 'book'. The true odds of winning for each of the three horses is evens, 3-2 and 9-1 respectively. In order to generate a profit on the wagers accepted by the bookmaker he may decide to increase the values to 60%, 50% and 20% for the three horses, representing odds of 4-6, Evens and 4-1. These values now total 130%, meaning that the book has an overround of 30 (130 − 100). This value of 30 represents the amount of profit for the bookmaker if he accepts bets in the correct proportions on each of the horses. The art of bookmaking is that he will take in, for example, $130 in wagers and only pay $100 back (including stakes) no matter which horse wins.

Profiting in gambling involves predicting the relationship of the true probabilities to the payout odds. If you can consistently make bets where the odds of paying out are better (pay out more) than the true odds of the event, then over time (in theory) you will come out ahead. Sports information services are often used by professional and semi-professional sports bettors to help achieve this goal.

The odds or amounts the bookmaker will pay are determined by the amounts bet on each of the respective possible events. They reflect the balance of wagers on either side of the event, and include the deduction of a bookmaker’s brokerage fee (“vig” or vigorish).

Presentation of odds

Taking an event with a 1 in 5 probability of occurring (i.e. a probability of 1/5, 0.2 or 20%), then the odds are 0.2 / (1 − 0.2) = 0.2 / 0.8 = 0.25. This figure (0.25) represents the monetary stake necessary for a person to gain one (monetary) unit on a successful wager when offered fair odds. This may be scaled up by any convenient factor to give whole number values. E.g. If a stake of 0.25 wins 1 unit, then scaling by a factor of four means a stake of 1 wins 4 units. If you bet 1 at these odds and the event occurred, you would receive back 4 plus your original 1 stake. This would be presented in fractional odds of 4 to 1 against (written as 4-1, 4:1, or 4/1), in decimal odds as 5.0 to include the returned stake, in craps payout as 5 for 1, and in moneyline odds as +400 representing the gain from a 100 stake.

By contrast, for an event with a 4 in 5 probability of occurring (i.e. a probability of 4/5, 0.8 or 80%), then the odds are 0.8 / (1 − 0.8) = 4. If you bet 4 at these odds and the event occurred, you would receive back 1 plus your original 4 stake. This would be presented in fractional odds of 4 to 1 on (written as 1/4 or 1-4), in decimal odds as 1.25 to include the returned stake, in craps as 5 for 4, and in moneyline odds as −400 representing the stake necessary to gain 100.

ODDS

In probability theory and statistics the odds in favor of an event or a proposition are the quantity \frac{p}{(1-p)}, where p is the probability of the event or proposition. The odds against the same event are \frac{(1-p)}{p}. For example, if you chose a random day of the week (7 days), then the odds that you would choose a Sunday would be:

\frac{(1/7)}{(1-(1/7))} = \frac{1/7}{6/7} = \frac{1}{6}, but not \frac{1}{7}.

The odds against you choosing Sunday are \frac{6}{1} = 6, meaning that it's 6 times more likely that you don't choose Sunday. These 'odds' are actually relative probabilities. Generally, 'odds' are not quoted to the general public in this format because of the natural confusion with the chance of an event occurring being expressed fractionally as a probability. Thus, the probability of choosing Sunday at random from the days of the week is 'one-seventh' (1/7). A bookmaker may (for his own purposes) use 'odds' of 'one-sixth', the overwhelming everyday use by most people is odds of the form 6 to 1, 6-1, 6:1, or 6/1 (all read as 'six-to-one') where the first figure represents the number of ways of failing to achieve the outcome and the second figure is the number of ways of achieving a favorable outcome: thus these are "odds against". In other words, an event with m to n "odds against" would have probability n/(m + n), while an event with m to n "odds on" would have probability m/(m + n). However, even in probability theory, odds may play a more natural or a more convenient role than probabilities. This is in particular the case in problems of sequential decision making as for instance in problems of how to stop (online) on a last specific event which is solved by the Odds algorithm.

In some games of chance, this is also the most convenient way for a person to understand how much winnings will be paid if the selection is successful: the person will be paid 'six' of whatever stake unit was bet for each 'one' of the stake unit wagered. For example, a £10 winning bet at 6/1 will win '6 × £10 = £60' with the original £10 stake also being returned.